Divalproex Sodium Full Prescribing Information

Bookmark and Share

Brand Name: Depakote
Generic Name: Divalproex Sodium

Depakote is used to treat of acute mania, manic episodes, associated with bipolar disorder and to prevent migraine headaches. Uses, dosage, side effects of Depakote.

Contents:

Box Warning
Description
Clinical Pharmacology
Indications and Usage
Contraindications
Warnings
Precautions
Drug Interactions
Adverse Reactions
Overdose
Dosage
Supplied

Depakote patient information (plain English)
Depakote during pregnancy

WARNING:

HEPATOTOXICITY:

HEPATIC FAILURE RESULTING IN FATALITIES HAS OCCURRED IN PATIENTS RECEIVING VALPROIC ACID AND ITS DERIVATIVES. EXPERIENCE HAS INDICATED THAT CHILDREN UNDER THE AGE OF TWO YEARS ARE AT A CONSIDERABLY INCREASED RISK OF DEVELOPING FATAL HEPATOTOXICITY, ESPECIALLY THOSE ON MULTIPLE ANTICONVULSANTS, THOSE WITH CONGENITAL METABOLIC DISORDERS, THOSE WITH SEVERE SEIZURE DISORDERS ACCOMPANIED BY MENTAL RETARDATION, AND THOSE WITH ORGANIC BRAIN DISEASE. WHEN DEPAKOTE IS USED IN THIS PATIENT GROUP, IT SHOULD BE USED WITH EXTREME CAUTION AND AS A SOLE AGENT. THE BENEFITS OF THERAPY SHOULD BE WEIGHED AGAINST THE RISKS. ABOVE THIS AGE GROUP, EXPERIENCE IN EPILEPSY HAS INDICATED THAT THE INCIDENCE OF FATAL HEPATOTOXICITY DECREASES CONSIDERABLY IN PROGRESSIVELY OLDER PATIENT GROUPS.

THESE INCIDENTS USUALLY HAVE OCCURRED DURING THE FIRST SIX MONTHS OF TREATMENT. SERIOUS OR FATAL HEPATOTOXICITY MAY BE PRECEDED BY NON-SPECIFIC SYMPTOMS SUCH AS MALAISE, WEAKNESS, LETHARGY, FACIAL EDEMA, ANOREXIA, AND VOMITING. IN PATIENTS WITH EPILEPSY, A LOSS OF SEIZURE CONTROL MAY ALSO OCCUR. PATIENTS SHOULD BE MONITORED CLOSELY FOR APPEARANCE OF THESE SYMPTOMS. LIVER FUNCTION TESTS SHOULD BE PERFORMED PRIOR TO THERAPY AND AT FREQUENT INTERVALS THEREAFTER, ESPECIALLY DURING THE FIRST SIX MONTHS.

advertisement

TERATOGENICITY:

VALPROATE CAN PRODUCE TERATOGENIC EFFECTS SUCH AS NEURAL TUBE DEFECTS (E.G., SPINA BIFIDA). ACCORDINGLY, THE USE OF DEPAKOTE TABLETS IN WOMEN OF CHILDBEARING POTENTIAL REQUIRES THAT THE BENEFITS OF ITS USE BE WEIGHED AGAINST THE RISK OF INJURY TO THE FETUS. THIS IS ESPECIALLY IMPORTANT WHEN THE TREATMENT OF A SPONTANEOUSLY REVERSIBLE CONDITION NOT ORDINARILY ASSOCIATED WITH PERMANENT INJURY OR RISK OF DEATH (E.G., MIGRAINE) IS CONTEMPLATED. SEE WARNINGS, INFORMATION FOR PATIENTS.

AN INFORMATION SHEET DESCRIBING THE TERATOGENIC POTENTIAL OF VALPROATE IS AVAILABLE FOR PATIENTS.

PANCREATITIS:

CASES OF LIFE-THREATENING PANCREATITIS HAVE BEEN REPORTED IN BOTH CHILDREN AND ADULTS RECEIVING VALPROATE. SOME OF THE CASES HAVE BEEN DESCRIBED AS HEMORRHAGIC WITH A RAPID PROGRESSION FROM INITIAL SYMPTOMS TO DEATH. CASES HAVE BEEN REPORTED SHORTLY AFTER INITIAL USE AS WELL AS AFTER SEVERAL YEARS OF USE. PATIENTS AND GUARDIANS SHOULD BE WARNED THAT ABDOMINAL PAIN, NAUSEA, VOMITING, AND/OR ANOREXIA CAN BE SYMPTOMS OF PANCREATITIS THAT REQUIRE PROMPT MEDICAL EVALUATION. IF PANCREATITIS IS DIAGNOSED, VALPROATE SHOULD ORDINARILY BE DISCONTINUED. ALTERNATIVE TREATMENT FOR THE UNDERLYING MEDICAL CONDITION SHOULD BE INITIATED AS CLINICALLY INDICATED. (See WARNINGS and PRECAUTIONS.)

Description

Divalproex sodium is a stable co-ordination compound comprised of sodium valproate and valproic acid in a 1:1 molar relationship and formed during the partial neutralization of valproic acid with 0.5 equivalent of sodium hydroxide. Chemically it is designated as sodium hydrogen bis(2-propylpentanoate). Divalproex sodium has the following structure:

Divalproex Sodium structure

Divalproex sodium occurs as a white powder with a characteristic odor.

DEPAKOTE tablets are for oral administration. DEPAKOTE tablets are supplied in three dosage strengths containing divalproex sodium equivalent to 125 mg, 250 mg, or 500 mg of valproic acid.

Inactive Ingredients
DEPAKOTE tablets: cellulosic polymers, diacetylated monoglycerides, povidone, pregelatinized starch (contains corn starch), silica gel, talc, titanium dioxide, and vanillin.

In addition, individual tablets contain:
125 mg tablets: FD&C Blue No. 1 and FD&C Red No. 40.
250 mg tablets: FD&C Yellow No. 6 and iron oxide.
500 mg tablets: D&C Red No. 30, FD&C Blue No. 2, and iron oxide.

Clinical Pharmacology

Pharmacodynamics Divalproex sodium dissociates to the valproate ion in the gastrointestinal tract. The mechanisms by which valproate exerts its therapeutic effects have not been established. It has been suggested that its activity in epilepsy is related to increased brain concentrations of gamma-aminobutyric acid (GABA).

Pharmacokinetics

Absorption/Bioavailability
Equivalent oral doses of DEPAKOTE (divalproex sodium) products and DEPAKENE (valproic acid) capsules deliver equivalent quantities of valproate ion systemically. Although the rate of valproate ion absorption may vary with the formulation administered (liquid, solid, or sprinkle), conditions of use (e.g., fasting or postprandial) and the method of administration (e.g., whether the contents of the capsule are sprinkled on food or the capsule is taken intact), these differences should be of minor clinical importance under the steady state conditions achieved in chronic use in the treatment of epilepsy.

However, it is possible that differences among the various valproate products in Tmax and Cmax could be important upon initiation of treatment. For example, in single dose studies, the effect of feeding had a greater influence on the rate of absorption of the tablet (increase in Tmax from 4 to 8 hours) than on the absorption of the sprinkle capsules (increase in Tmax from 3.3 to 4.8 hours).

While the absorption rate from the G.I. tract and fluctuation in valproate plasma concentrations vary with dosing regimen and formulation, the efficacy of valproate as an anticonvulsant in chronic use is unlikely to be affected. Experience employing dosing regimens from once-a-day to four-times-a-day, as well as studies in primate epilepsy models involving constant rate infusion, indicate that total daily systemic bioavailability (extent of absorption) is the primary determinant of seizure control and that differences in the ratios of plasma peak to trough concentrations between valproate formulations are inconsequential from a practical clinical standpoint. Whether or not rate of absorption influences the efficacy of valproate as an antimanic or antimigraine agent is unknown.

Co-administration of oral valproate products with food and substitution among the various DEPAKOTE and DEPAKENE formulations should cause no clinical problems in the management of patients with epilepsy (see DOSAGE AND ADMINISTRATION). Nonetheless, any changes in dosage administration, or the addition or discontinuance of concomitant drugs should ordinarily be accompanied by close monitoring of clinical status and valproate plasma concentrations.

Distribution

Protein Binding:
The plasma protein binding of valproate is concentration dependent and the free fraction increases from approximately 10% at 40 μg/mL to 18.5% at 130 μg/mL. Protein binding of valproate is reduced in the elderly, in patients with chronic hepatic diseases, in patients with renal impairment, and in the presence of other drugs (e.g., aspirin). Conversely, valproate may displace certain protein-bound drugs (e.g., phenytoin, carbamazepine, warfarin, and tolbutamide). (See PRECAUTIONS, Drug Interactions for more detailed information on the pharmacokinetic interactions of valproate with other drugs.)

CNS Distribution:
Valproate concentrations in cerebrospinal fluid (CSF) approximate unbound concentrations in plasma (about 10% of total concentration).

Metabolism
Valproate is metabolized almost entirely by the liver. In adult patients on monotherapy, 30-50% of an administered dose appears in urine as a glucuronide conjugate. Mitochondrial ß-oxidation is the other major metabolic pathway, typically accounting for over 40% of the dose. Usually, less than 15-20% of the dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose is excreted unchanged in urine.

The relationship between dose and total valproate concentration is nonlinear; concentration does not increase proportionally with the dose, but rather, increases to a lesser extent due to saturable plasma protein binding. The kinetics of unbound drug are linear.

Elimination
Mean plasma clearance and volume of distribution for total valproate are 0.56 L/hr/1.73 m2 and 11 L/1.73 m2, respectively. Mean plasma clearance and volume of distribution for free valproate are 4.6 L/hr/1.73 m2 and 92 L/1.73 m2. Mean terminal half-life for valproate monotherapy ranged from 9 to 16 hours following oral dosing regimens of 250 to 1000 mg.

The estimates cited apply primarily to patients who are not taking drugs that affect hepatic metabolizing enzyme systems. For example, patients taking enzyme-inducing antiepileptic drugs (carbamazepine, phenytoin, and phenobarbital) will clear valproate more rapidly. Because of these changes in valproate clearance, monitoring of antiepileptic concentrations should be intensified whenever concomitant antiepileptics are introduced or withdrawn.

Special Populations

Effect of Age:
Neonates - Children within the first two months of life have a markedly decreased ability to eliminate valproate compared to older children and adults. This is a result of reduced clearance (perhaps due to delay in development of glucuronosyltransferase and other enzyme systems involved in valproate elimination) as well as increased volume of distribution (in part due to decreased plasma protein binding). For example, in one study, the half-life in children under 10 days ranged from 10 to 67 hours compared to a range of 7 to 13 hours in children greater than 2 months.

Children - Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults.

Elderly - The capacity of elderly patients (age range: 68 to 89 years) to eliminate valproate has been shown to be reduced compared to younger adults (age range: 22 to 26). Intrinsic clearance is reduced by 39%; the free fraction is increased by 44%. Accordingly, the initial dosage should be reduced in the elderly. (See DOSAGE AND ADMINISTRATION).

Effect of Gender:
There are no differences in the body surface area adjusted unbound clearance between males and females (4.8 ±0.17 and 4.7 ±0.07 L/hr per 1.73 m2, respectively).

Effect of Race:
The effects of race on the kinetics of valproate have not been studied.

Effect of Disease:
Liver Disease - (See BOXED WARNING, CONTRAINDICATIONS, and WARNINGS). Liver disease impairs the capacity to eliminate valproate. In one study, the clearance of free valproate was decreased by 50% in 7 patients with cirrhosis and by 16% in 4 patients with acute hepatitis, compared with 6 healthy subjects. In that study, the half-life of valproate was increased from 12 to 18 hours. Liver disease is also associated with decreased albumin concentrations and larger unbound fractions (2 to 2.6 fold increase) of valproate. Accordingly, monitoring of total concentrations may be misleading since free concentrations may be substantially elevated in patients with hepatic disease whereas total concentrations may appear to be normal.

Renal Disease - A slight reduction (27%) in the unbound clearance of valproate has been reported in patients with renal failure (creatinine clearance < 10 mL/minute); however, hemodialysis typically reduces valproate concentrations by about 20%. Therefore, no dosage adjustment appears to be necessary in patients with renal failure. Protein binding in these patients is substantially reduced; thus, monitoring total concentrations may be misleading.

Plasma Levels and Clinical Effect

The relationship between plasma concentration and clinical response is not well documented. One contributing factor is the nonlinear, concentration dependent protein binding of valproate which affects the clearance of the drug. Thus, monitoring of total serum valproate cannot provide a reliable index of the bioactive valproate species.

For example, because the plasma protein binding of valproate is concentration dependent, the free fraction increases from approximately 10% at 40 μg/mL to 18.5% at 130 μg/mL . Higher than expected free fractions occur in the elderly, in hyperlipidemic patients, and in patients with hepatic and renal diseases.

Epilepsy:
The therapeutic range in epilepsy is commonly considered to be 50 to 100 μg/mL of total valproate, although some patients may be controlled with lower or higher plasma concentrations.

Mania:
In placebo-controlled clinical trials of acute mania, patients were dosed to clinical response with trough plasma concentrations between 50 and 125 μg/mL (See DOSAGE AND ADMINISTRATION).

Clinical Trials

Mania
The effectiveness of DEPAKOTE for the treatment of acute mania was demonstrated in two 3-week, placebo controlled, parallel group studies.

(1) Study 1: The first study enrolled adult patients who met DSM-III-R criteria for Bipolar Disorder and who were hospitalized for acute mania. In addition, they had a history of failing to respond to or not tolerating previous lithium carbonate treatment. DEPAKOTE was initiated at a dose of 250 mg tid and adjusted to achieve serum valproate concentrations in a range of 50-100 μg/mL by day 7. Mean DEPAKOTE doses for completers in this study were 1118, 1525, and 2402 mg/day at days 7, 14, and 21, respectively. Patients were assessed on the Young Mania Rating Scale (YMRS; score ranges from 0-60), an augmented Brief Psychiatric Rating Scale (BPRS-A), and the Global Assessment Scale (GAS). Baseline scores and change from baseline in the week 3 endpoint (last-observation-carry-forward) analysis were as follows:

Study 1

YMRS Total Score

Group

Baseline1

BL to Wk 32

Difference3

Placebo

28.8

+ 0.2


DEPAKOTE

28.5

- 9.5

9.7

BPRS-A Total Score

Group

Baseline1

BL to Wk 32

Difference3

Placebo

76.2

+ 1.8


DEPAKOTE

76.4

-17.0

18.8

GAS Score

Group

Baseline1

BL to Wk 32

Difference3

Placebo

31.8

0.0


DEPAKOTE

30.3

+18.1

18.1

1 Mean score at baseline

2 Change from baseline to week 3 (LOCF)

3 Difference in change from baseline to week 3 endpoint (LOCF) between DEPAKOTE and placebo

DEPAKOTE was statistically significantly superior to placebo on all three measures of outcome.

(2) Study 2: The second study enrolled adult patients who met Research Diagnostic Criteria for manic disorder and who were hospitalized for acute mania. DEPAKOTE was initiated at a dose of 250 mg tid and adjusted within a dose range of 750-2500 mg/day to achieve serum valproate concentrations in a range of 40-150 μg/mL . Mean DEPAKOTE doses for completers in this study were 1116, 1683, and 2006 mg/day at days 7, 14, and 21, respectively. Study 2 also included a lithium group for which lithium doses for completers were 1312, 1869, and 1984 mg/day at days 7, 14, and 21, respectively. Patients were assessed on the Manic Rating Scale (MRS; score ranges from 11-63), and the primary outcome measures were the total MRS score, and scores for two subscales of the MRS, i.e., the Manic Syndrome Scale (MSS) and the Behavior and Ideation Scale (BIS). Baseline scores and change from baseline in the week 3 endpoint (last-observation-carry-forward) analysis were as follows:

Study 2

MRS Total Score

Group

Baseline1

BL to Day 212

Difference3

Placebo

38.9

- 4.4


Lithium

37.9

-10.5

6.1

DEPAKOTE

38.1

- 9.5

5.1

MSS Total Score

Group

Baseline1

BL to Day 212

Difference3

Placebo

18.9

- 2.5


Lithium

18.5

- 6.2

3.7

DEPAKOTE

18.9

- 6.0

3.5

BIS Total Score

Group

Baseline1

BL to Day 212

Difference3

Placebo

16.4

- 1.4


Lithium

16.0

- 3.8

2.4

DEPAKOTE

15.7

- 3.2

1.8

1 Mean score at baseline

2 Change from baseline to day 21 (LOCF)

3 Difference in change from baseline to day 21 endpoint (LOCF) between DEPAKOTE and placebo and lithium and placebo

DEPAKOTE was statistically significantly superior to placebo on all three measures of outcome. An exploratory analysis for age and gender effects on outcome did not suggest any differential responsiveness on the basis of age or gender.

A comparison of the percentage of patients showing ≥ 30% reduction in the symptom score from baseline in each treatment group, separated by study, is shown in Figure 1.

Figure 1
Percentage of Patients Achieving
≥ 30% Reduction in Symptom Score From Baseline

A comparison of the percentage of Divalproex Sodium patients

* p < 0.05

PBO = placebo, DVPX = DEPAKOTE

Migraine
The results of two multicenter, randomized, double-blind, placebo-controlled clinical trials established the effectiveness of DEPAKOTE in the prophylactic treatment of migraine headache.

Both studies employed essentially identical designs and recruited patients with a history of migraine with or without aura (of at least 6 months in duration) who were experiencing at least 2 migraine headaches a month during the 3 months prior to enrollment. Patients with cluster headaches were excluded. Women of childbearing potential were excluded entirely from one study, but were permitted in the other if they were deemed to be practicing an effective method of contraception.

In each study following a 4-week single-blind placebo baseline period, patients were randomized, under double blind conditions, to DEPAKOTE or placebo for a 12-week treatment phase, comprised of a 4-week dose titration period followed by an 8-week maintenance period. Treatment outcome was assessed on the basis of 4-week migraine headache rates during the treatment phase.

In the first study, a total of 107 patients (24 M, 83 F), ranging in age from 26 to 73 were randomized 2:1, DEPAKOTE to placebo. Ninety patients completed the 8-week maintenance period. Drug dose titration, using 250 mg tablets, was individualized at the investigator's discretion. Adjustments were guided by actual/sham trough total serum valproate levels in order to maintain the study blind. In patients on DEPAKOTE doses ranged from 500 to 2500 mg a day. Doses over 500 mg were given in three divided doses (TID). The mean dose during the treatment phase was 1087 mg/day resulting in a mean trough total valproate level of 72.5 μg/mL, with a range of 31 to 133 μg/mL.

The mean 4-week migraine headache rate during the treatment phase was 5.7 in the placebo group compared to 3.5 in the DEPAKOTE group (see Figure 2). These rates were significantly different.

In the second study, a total of 176 patients (19 males and 157 females), ranging in age from 17 to 76 years, were randomized equally to one of three DEPAKOTE dose groups (500, 1000, or 1500 mg/day) or placebo. The treatments were given in two divided doses (BID). One hundred thirty-seven patients completed the 8-week maintenance period. Efficacy was to be determined by a comparison of the 4-week migraine headache rate in the combined 1000/1500 mg/day group and placebo group.

The initial dose was 250 mg daily. The regimen was advanced by 250 mg every 4 days (8 days for 500 mg/day group), until the randomized dose was achieved. The mean trough total valproate levels during the treatment phase were 39.6, 62.5, and 72.5 μg/mL in the DEPAKOTE 500, 1000, and 1500 mg/day groups, respectively.

The mean 4-week migraine headache rates during the treatment phase, adjusted for differences in baseline rates, were 4.5 in the placebo group, compared to 3.3, 3.0, and 3.3 in the DEPAKOTE 500, 1000, and 1500 mg/day groups, respectively, based on intent-totreat results (see Figure 2). Migraine headache rates in the combined DEPAKOTE 1000/1500 mg group were significantly lower than in the placebo group.

Figure 2
Mean 4-week Migraine Rates

Divalproex Sodium patients migraine rates

1 Mean dose of DEPAKOTE was 1087 mg/day.
2 Dose of DEPAKOTE was 500 or 1000 mg/day.

Epilepsy
The efficacy of DEPAKOTE in reducing the incidence of complex partial seizures (CPS) that occur in isolation or in association with other seizure types was established in two controlled trials.

In one, multiclinic, placebo controlled study employing an add-on design, (adjunctive therapy) 144 patients who continued to suffer eight or more CPS per 8 weeks during an 8 week period of monotherapy with doses of either carbamazepine or phenytoin sufficient to assure plasma concentrations within the "therapeutic range"  were randomized to receive, in addition to their original antiepilepsy drug (AED), either DEPAKOTE or placebo. Randomized patients were to be followed for a total of 16 weeks. The following table presents the findings.

Adjunctive Therapy Study Median Incidence of CPS per 8 Weeks

Add-on Treatment

Number of Patients

Baseline Incidence

Experimental Incidence

DEPAKOTE

75

16.0

8.9*

Placebo

69

14.5

11.5

*Reduction from baseline statistically significantly greater for DEPAKOTE than placebo at p ÂÂ £0.05 level.

Figure 3 presents the proportion of patients (X axis) whose percentage reduction from baseline in complex partial seizure rates was at least as great as that indicated on the Y axis in the adjunctive therapy study. A positive percent reduction indicates an improvement (i.e., a decrease in seizure frequency), while a negative percent reduction indicates worsening. Thus, in a display of this type, the curve for an effective treatment is shifted to the left of the curve for placebo. This figure shows that the proportion of patients achieving any particular level of improvement was consistently higher for DEPAKOTE than for placebo. For example, 45% of patients treated with DEPAKOTE had a ≥ 50% reduction in complex partial seizure rate compared to 23% of patients treated with placebo.

Figure 3

Depakote / placebo chart

The second study assessed the capacity of DEPAKOTE to reduce the incidence of CPS when administered as the sole AED. The study compared the incidence of CPS among patients randomized to either a high or low dose treatment arm. Patients qualified for entry into the randomized comparison phase of this study only if 1) they continued to experience 2 or more CPS per 4 weeks during an 8 to 12 week long period of monotherapy with adequate doses of an AED (i.e., phenytoin, carbamazepine, phenobarbital, or primidone) and 2) they made a successful transition over a two week interval to DEPAKOTE. Patients entering the randomized phase were then brought to their assigned target dose, gradually tapered off their concomitant AED and followed for an interval as long as 22 weeks. Less than 50% of the patients randomized, however, completed the study. In patients converted to DEPAKOTE monotherapy, the mean total valproate concentrations during monotherapy were 71 and 123 μg/mL in the low dose and high dose groups, respectively.

The following table presents the findings for all patients randomized who had at least one post-randomization assessment.

Monotherapy Study Median Incidence of CPS per 8 Weeks

Treatment

Number of Patients

Baseline Incidence

Randomized Phase Incidence

High dose DEPAKOTE

131

13.2

10.7*

Low dose DEPAKOTE

134

14.2

13.8

* Reduction from baseline statistically significantly greater for high dose than low dose at p £ 0.05 level.

Figure 4 presents the proportion of patients (X axis) whose percentage reduction from baseline in complex partial seizure rates was at least as great as that indicated on the Y axis in the monotherapy study. A positive percent reduction indicates an improvement (i.e., a decrease in seizure frequency), while a negative percent reduction indicates worsening. Thus, in a display of this type, the curve for a more effective treatment is shifted to the left of the curve for a less effective treatment. This figure shows that the proportion of patients achieving any particular level of reduction was consistently higher for high dose DEPAKOTE than for low dose DEPAKOTE. For example, when switching from carbamazepine, phenytoin, phenobarbital or primidone monotherapy to high dose DEPAKOTE monotherapy, 63% of patients experienced no change or a reduction in complex partial seizure rates compared to 54% of patients receiving low dose DEPAKOTE.

Figure 4

Depakote Chart 4

top

Indications and Usage

Mania
DEPAKOTE (divalproex sodium) is indicated for the treatment of the manic episodes associated with bipolar disorder. A manic episode is a distinct period of abnormally and persistently elevated, expansive, or irritable mood. Typical symptoms of mania include pressure of speech, motor hyperactivity, reduced need for sleep, flight of ideas, grandiosity, poor judgement, aggressiveness, and possible hostility.

The efficacy of DEPAKOTE was established in 3-week trials with patients meeting DSM-III-R criteria for bipolar disorder who were hospitalized for acute mania (See Clinical Trials under CLINICAL PHARMACOLOGY).

The safety and effectiveness of DEPAKOTE for long-term use in mania, i.e., more than 3 weeks, has not been systematically evaluated in controlled clinical trials. Therefore, physicians who elect to use DEPAKOTE for extended periods should continually reevaluate the long-term usefulness of the drug for the individual patient.

Epilepsy
DEPAKOTE (divalproex sodium) is indicated as monotherapy and adjunctive therapy in the treatment of patients with complex partial seizures that occur either in isolation or in association with other types of seizures. DEPAKOTE (divalproex sodium) is also indicated for use as sole and adjunctive therapy in the treatment of simple and complex absence seizures, and adjunctively in patients with multiple seizure types that include absence seizures.

Simple absence is defined as very brief clouding of the sensorium or loss of consciousness accompanied by certain generalized epileptic discharges without other detectable clinical signs. Complex absence is the term used when other signs are also present.

Migraine
DEPAKOTE is indicated for prophylaxis of migraine headaches. There is no evidence that DEPAKOTE is useful in the acute treatment of migraine headaches. Because valproic acid may be a hazard to the fetus, DEPAKOTE should be considered for women of childbearing potential only after this risk has been thoroughly discussed with the patient and weighed against the potential benefits of treatment (see WARNINGS - Usage In Pregnancy, PRECAUTIONS - Information for Patients).

SEE WARNINGS FOR STATEMENT REGARDING FATAL HEPATIC DYSFUNCTION.

top

Contraindications

DIVALPROEX SODIUM SHOULD NOT BE ADMINISTERED TO PATIENTS WITH HEPATIC DISEASE OR SIGNIFICANT HEPATIC DYSFUNCTION.

Divalproex sodium is contraindicated in patients with known hypersensitivity to the drug. Divalproex sodium is contraindicated in patients with known urea cycle disorders (see WARNINGS).

top

Warnings

Hepatotoxicity
Hepatic failure resulting in fatalities has occurred in patients receiving valproic acid. These incidents usually have occurred during the first six months of treatment. Serious or fatal hepatotoxicity may be preceded by non-specific symptoms such as malaise, weakness, lethargy, facial edema, anorexia, and vomiting. In patients with epilepsy, a loss of seizure control may also occur. Patients should be monitored closely for appearance of these symptoms. Liver function tests should be performed prior to therapy and at frequent intervals thereafter, especially during the first six months. However, physicians should not rely totally on serum biochemistry since these tests may not be abnormal in all instances, but should also consider the results of careful interim medical history and physical examination.

Caution should be observed when administering DEPAKOTE products to patients with a prior history of hepatic disease. Patients on multiple anticonvulsants, children, those with congenital metabolic disorders, those with severe seizure disorders accompanied by mental retardation, and those with organic brain disease may be at particular risk. Experience has indicated that children under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions. When DEPAKOTE is used in this patient group, it should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. Above this age group, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups.

The drug should be discontinued immediately in the presence of significant hepatic dysfunction, suspected or apparent. In some cases, hepatic dysfunction has progressed in spite of discontinuation of drug.

Pancreatitis
Cases of life-threatening pancreatitis have been reported in both children and adults receiving valproate. Some of the cases have been described as hemorrhagic with rapid progression from initial symptoms to death. Some cases have occurred shortly after initial use as well as after several years of use. The rate based upon the reported cases exceeds that expected in the general population and there have been cases in which pancreatitis recurred after rechallenge with valproate. In clinical trials, there were 2 cases of pancreatitis without alternative etiology in 2416 patients, representing 1044 patient-years experience. Patients and guardians should be warned that abdominal pain, nausea, vomiting, and/or anorexia can be symptoms of pancreatitis that require prompt medical evaluation. If pancreatitis is diagnosed, valproate should ordinarily be discontinued. Alternative treatment for the underlying medical condition should be initiated as clinically indicated (see BOXED WARNING).

Urea Cycle Disorders (UCD) Divalproex sodium is contraindicated in patients with known urea cycle disorders. Hyperammonemic encephalopathy, sometimes fatal, has been reported following initiation of valproate therapy in patients with urea cycle disorders, a group of uncommon genetic abnormalities, particularly ornithine transcarbamylase deficiency. Prior to the initiation of valproate therapy, evaluation for UCD should be considered in the following patients: 1) those with a history of unexplained encephalopathy or coma, encephalopathy associated with a protein load, pregnancy-related or postpartum encephalopathy, unexplained mental retardation, or history of elevated plasma ammonia or glutamine; 2) those with cyclical vomiting and lethargy, episodic extreme irritability, ataxia, low BUN, or protein avoidance; 3) those with a family history of UCD or a family history of unexplained infant deaths (particularly males); 4) those with other signs or symptoms of UCD. Patients who develop symptoms of unexplained hyperammonemic encephalopathy while receiving valproate therapy should receive prompt treatment (including discontinuation of valproate therapy) and be evaluated for underlying urea cycle disorders (see CONTRAINDICATIONS and PRECAUTIONS).

Somnolence in the Elderly
In a double-blind, multicenter trial of valproate in elderly patients with dementia (mean age = 83 years), doses were increased by 125 mg/day to a target dose of 20 mg/kg/day. A significantly higher proportion of valproate patients had somnolence compared to placebo, and although not statistically significant, there was a higher proportion of patients with dehydration. Discontinuations for somnolence were also significantly higher than with placebo. In some patients with somnolence (approximately one-half), there was associated reduced nutritional intake and weight loss. There was a trend for the patients who experienced these events to have a lower baseline albumin concentration, lower valproate clearance, and a higher BUN. In elderly patients, dosage should be increased more slowly and with regular monitoring for fluid and nutritional intake, dehydration, somnolence, and other adverse events. Dose reductions or discontinuation of valproate should be considered in patients with decreased food or fluid intake and in patients with excessive somnolence (see DOSAGE AND ADMINISTRATION).

Thrombocytopenia
The frequency of adverse effects (particularly elevated liver enzymes and thrombocytopenia [see PRECAUTIONS]) may be doserelated. In a clinical trial of DEPAKOTE as monotherapy in patients with epilepsy, 34/126 patients (27%) receiving approximately 50 mg/kg/day on average, had at least one value of platelets ≤75 x 109/L. Approximately half of these patients had treatment discontinued, with return of platelet counts to normal. In the remaining patients, platelet counts normalized with continued treatment. In this study, the probability of thrombocytopenia appeared to increase significantly at total valproate concentrations of ≥ 110 μg/mL (females) or ≥ 135 μg/mL (males). The therapeutic benefit which may accompany the higher doses should therefore be weighed against the possibility of a greater incidence of adverse effects.

Usage In Pregnancy
ACCORDING TO PUBLISHED AND UNPUBLISHED REPORTS, VALPROIC ACID MAY PRODUCE TERATOGENIC EFFECTS IN THE OFFSPRING OF HUMAN FEMALES RECEIVING THE DRUG DURING PREGNANCY.

THERE ARE MULTIPLE REPORTS IN THE CLINICAL LITERATURE WHICH INDICATE THAT THE USE OF ANTIEPILEPTIC DRUGS DURING PREGNANCY RESULTS IN AN INCREASED INCIDENCE OF BIRTH DEFECTS IN THE OFFSPRING. ALTHOUGH DATA ARE MORE EXTENSIVE WITH RESPECT TO TRIMETHADIONE, PARAMETHADIONE, PHENYTOIN, AND PHENOBARBITAL, REPORTS INDICATE A POSSIBLE SIMILAR ASSOCIATION WITH THE USE OF OTHER ANTIEPILEPTIC DRUGS. THEREFORE, ANTIEPILEPSY DRUGS SHOULD BE ADMINISTERED TO WOMEN OF CHILDBEARING POTENTIAL ONLY IF THEY ARE CLEARLY SHOWN TO BE ESSENTIAL IN THE MANAGEMENT OF THEIR SEIZURES.

THE INCIDENCE OF NEURAL TUBE DEFECTS IN THE FETUS MAY BE INCREASED IN MOTHERS RECEIVING VALPROATE DURING THE FIRST TRIMESTER OF PREGNANCY. THE CENTERS FOR DISEASE CONTROL (CDC) HAS ESTIMATED THE RISK OF VALPROIC ACID EXPOSED WOMEN HAVING CHILDREN WITH SPINA BIFIDA TO BE APPROXIMATELY 1 TO 2%.

OTHER CONGENITAL ANOMALIES (EG, CRANIOFACIAL DEFECTS, CARDIOVASCULAR MALFORMATIONS AND ANOMALIES INVOLVING VARIOUS BODY SYSTEMS), COMPATIBLE AND INCOMPATIBLE WITH LIFE, HAVE BEEN REPORTED. SUFFICIENT DATA TO DETERMINE THE INCIDENCE OF THESE CONGENITAL ANOMALIES IS NOT AVAILABLE.

THE HIGHER INCIDENCE OF CONGENITAL ANOMALIES IN ANTIEPILEPTIC DRUG-TREATED WOMEN WITH SEIZURE DISORDERS CANNOT BE REGARDED AS A CAUSE AND EFFECT RELATIONSHIP. THERE ARE INTRINSIC METHODOLOGIC PROBLEMS IN OBTAINING ADEQUATE DATA ON DRUG TERATOGENICITY IN HUMANS; GENETIC FACTORS OR THE EPILEPTIC CONDITION ITSELF, MAY BE MORE IMPORTANT THAN DRUG THERAPY IN CONTRIBUTING TO CONGENITAL ANOMALIES.

PATIENTS TAKING VALPROATE MAY DEVELOP CLOTTING ABNORMALITIES. A PATIENT WHO HAD LOW FIBRINOGEN WHEN TAKING MULTIPLE ANTICONVULSANTS INCLUDING VALPROATE GAVE BIRTH TO AN INFANT WITH AFIBRINOGENEMIA WHO SUBSEQUENTLY DIED OF HEMORRHAGE. IF VALPROATE IS USED IN PREGNANCY, THE CLOTTING PARAMETERS SHOULD BE MONITORED CAREFULLY.

HEPATIC FAILURE, RESULTING IN THE DEATH OF A NEWBORN AND OF AN INFANT, HAVE BEEN REPORTED FOLLOWING THE USE OF VALPROATE DURING PREGNANCY.

Animal studies have demonstrated valproate-induced teratogenicity. Increased frequencies of malformations, as well as intrauterine growth retardation and death, have been observed in mice, rats, rabbits, and monkeys following prenatal exposure to valproate. Malformations of the skeletal system are the most common structural abnormalities produced in experimental animals, but neural tube closure defects have been seen in mice exposed to maternal plasma valproate concentrations exceeding 230 μg/mL (2.3 times the upper limit of the human therapeutic range) during susceptible periods of embryonic development. Administration of an oral dose of 200 mg/kg/day or greater (50% of the maximum human daily dose or greater on a mg/m2 basis) to pregnant rats during organogenesis produced malformations (skeletal, cardiac, and urogenital) and growth retardation in the offspring. These doses resulted in peak maternal plasma valproate levels of approximately 340 μg/mL or greater (3.4 times the upper limit of the human therapeutic range or greater). Behavioral deficits have been reported in the offspring of rats given a dose of 200 mg/kg/day throughout most of pregnancy. An oral dose of 350 mg/kg/day (approximately 2 times the maximum human daily dose on a mg/m2 basis) produced skeletal and visceral malformations in rabbits exposed during organogenesis. Skeletal malformations, growth retardation, and death were observed in rhesus monkeys following administration of an oral dose of 200 mg/kg/day (equal to the maximum human daily dose on a mg/m2 basis) during organogenesis. This dose resulted in peak maternal plasma valproate levels of approximately 280 μg/mL (2.8 times the upper limit of the human therapeutic range).

The prescribing physician will wish to weigh the benefits of therapy against the risks in treating or counseling women of childbearing potential. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.

Antiepileptic drugs should not be discontinued abruptly in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life. In individual cases where the severity and frequency of the seizure disorder are such that the removal of medication does not pose a serious threat to the patient, discontinuation of the drug may be considered prior to and during pregnancy, although it cannot be said with any confidence that even minor seizures do not pose some hazard to the developing embryo or fetus.

Tests to detect neural tube and other defects using current accepted procedures should be considered a part of routine prenatal care in childbearing women receiving valproate.

top

Precautions

Hepatic Dysfunction
See
BOXED WARNING, CONTRAINDICATIONS and WARNINGS.

Pancreatitis
See
BOXED WARNING and WARNINGS.

Hyperammonemia
Hyperammonemia has been reported in association with valproate therapy and may be present despite normal liver function tests. In patients who develop unexplained lethargy and vomiting or changes in mental status, hyperammonemic encephalopathy should be considered and an ammonia level should be measured. If ammonia is increased, valproate therapy should be discontinued. Appropriate interventions for treatment of hyperammonemia should be initiated, and such patients should undergo investigation for underlying urea cycle disorders (see CONTRAINDICATIONS and WARNINGS - Urea Cycle Disorders).

Asymptomatic elevations of ammonia are more common and when present, require close monitoring of plasma ammonia levels. If the elevation persists, discontinuation of valproate therapy should be considered.

General
Because of reports of thrombocytopenia (see WARNINGS), inhibition of the secondary phase of platelet aggregation, and abnormal coagulation parameters, (e.g., low fibrinogen), platelet counts and coagulation tests are recommended before initiating therapy and at periodic intervals. It is recommended that patients receiving DEPAKOTE be monitored for platelet count and coagulation parameters prior to planned surgery. In a clinical trial of DEPAKOTE as monotherapy in patients with epilepsy, 34/126 patients (27%) receiving approximately 50 mg/kg/day on average, had at least one value of platelets ≤ 75 x 109/L. Approximately half of these patients had treatment discontinued, with return of platelet counts to normal. In the remaining patients, platelet counts normalized with continued treatment. In this study, the probability of thrombocytopenia appeared to increase significantly at total valproate concentrations of ≥110 μg/mL (females) or ≥ 135 μg/mL (males). Evidence of hemorrhage, bruising, or a disorder of hemostasis/coagulation is an indication for reduction of the dosage or withdrawal of therapy.

Since DEPAKOTE may interact with concurrently administered drugs which are capable of enzyme induction, periodic plasma concentration determinations of valproate and concomitant drugs are recommended during the early course of therapy. (See PRECAUTIONS- Drug Interactions.)

Valproate is partially eliminated in the urine as a keto-metabolite which may lead to a false interpretation of the urine ketone test. There have been reports of altered thyroid function tests associated with valproate. The clinical significance of these is unknown. Suicidal ideation may be a manifestation of certain psychiatric disorders, and may persist until significant remission of symptoms occurs. Close supervision of high risk patients should accompany initial drug therapy.

There are in vitro studies that suggest valproate stimulates the replication of the HIV and CMV viruses under certain experimental conditions. The clinical consequence, if any, is not known. Additionally, the relevance of these in vitro findings is uncertain for patients receiving maximally suppressive antiretroviral therapy. Nevertheless, these data should be borne in mind when interpreting the results from regular monitoring of the viral load in HIV infected patients receiving valproate or when following CMV infected patients clinically.

Information for Patients Patients and guardians should be warned that abdominal pain, nausea, vomiting, and/or anorexia can be symptoms of pancreatitis and, therefore, require further medical evaluation promptly.

Patients should be informed of the signs and symptoms associated with hyperammonemic encephalopathy (see PRECAUTIONS - Hyperammonemia) and be told to inform the prescriber if any of these symptoms occur.

Since DEPAKOTE products may produce CNS depression, especially when combined with another CNS depressant (eg, alcohol), patients should be advised not to engage in hazardous activities, such as driving an automobile or operating dangerous machinery, until it is known that they do not become drowsy from the drug.

Since DEPAKOTE has been associated with certain types of birth defects, female patients of child-bearing age considering the use of DEPAKOTE should be advised to read the Patient Information Leaflet, which appears as the last section of the labeling.

top

Drug Interactions

Effects of Co-Administered Drugs on Valproate Clearance:
Drugs that affect the level of expression of hepatic enzymes, particularly those that elevate levels of glucuronosyltransferases, may increase the clearance of valproate. For example, phenytoin, carbamazepine, and phenobarbital (or primidone) can double the clearance of valproate. Thus, patients on monotherapy will generally have longer half-lives and higher concentrations than patients receiving polytherapy with antiepilepsy drugs.

In contrast, drugs that are inhibitors of cytochrome P450 isozymes, e.g., antidepressants, may be expected to have little effect on valproate clearance because cytochrome P450 microsomal mediated oxidation is a relatively minor secondary metabolic pathway compared to glucuronidation and beta-oxidation.

Because of these changes in valproate clearance, monitoring of valproate and concomitant drug concentrations should be increased whenever enzyme inducing drugs are introduced or withdrawn.

The following list provides information about the potential for an influence of several commonly prescribed medications on valproate pharmacokinetics. The list is not exhaustive nor could it be, since new interactions are continuously being reported.

Drugs for which a potentially important interaction has been observed:
Aspirin - A study involving the co-administration of aspirin at antipyretic doses (11 to 16 mg/kg) with valproate to pediatric patients (n=6) revealed a decrease in protein binding and an inhibition of metabolism of valproate. Valproate free fraction was increased 4-fold in the presence of aspirin compared to valproate alone. The ß oxidation pathway consisting of 2-E-valproic acid, 3-OH-valproic acid, and 3-keto valproic acid was decreased from 25% of total metabolites excreted on valproate alone to 8.3% in the presence of aspirin. Caution should be observed if valproate and aspirin are to be co-administered.

Felbamate - A study involving the co-administration of 1200 mg/day of felbamate with valproate to patients with epilepsy (n=10) revealed an increase in mean valproate peak concentration by 35% (from 86 to 115 μg/mL compared to valproate alone. Increasing the felbamate dose to 2400 mg/day increased the mean valproate peak concentration to 133 μg/mL (another 16% increase). A decrease in valproate dosage may be necessary when felbamate therapy is initiated.

Meropenem - Subtherapeutic valproic acid levels have been reported when meropenem was coadministered.

Rifampin - A study involving the administration of a single dose of valproate (7 mg/kg) 36 hours after 5 nights of daily dosing with rifampin (600 mg) revealed a 40% increase in the oral clearance of valproate. Valproate dosage adjustment may be necessary when it is co-administered with rifampin.

Drugs for which either no interaction or a likely clinically unimportant interaction has been observed:
Antacids - A study involving the co-administration of valproate 500 mg with commonly administered antacids (Maalox, Trisogel, and Titralac - 160 mEq doses) did not reveal any effect on the extent of absorption of valproate.

Titralac - 160 mEq doses) did not reveal any effect on the extent of absorption of valproate.

Chlorpromazine - A study involving the administration of 100 to 300 mg/day of chlorpromazine to schizophrenic patients already receiving valproate (200 mg BID) revealed a 15% increase in trough plasma levels of valproate.

Haloperidol - A study involving the administration of 6 to 10 mg/day of haloperidol to schizophrenic patients already receiving valproate (200 mg BID) revealed no significant changes in valproate trough plasma levels.

Cimetidine and Ranitidine - Cimetidine and ranitidine do not affect the clearance of valproate.

Effects of Valproate on Other Drugs:
Valproate has been found to be a weak inhibitor of some P450 isozymes, epoxide hydrase, and glucuronosyltransferases.

The following list provides information about the potential for an influence of valproate co-administration on the pharmacokinetics or pharmacodynamics of several commonly prescribed medications. The list is not exhaustive, since new interactions are continuously being reported.

Drugs for which a potentially important valproate interaction has been observed:
Amitriptyline/Nortriptyline - Administration of a single oral 50 mg dose of amitriptyline to 15 normal volunteers (10 males and 5 females) who received valproate (500 mg BID) resulted in a 21% decrease in plasma clearance of amitriptyline and a 34% decrease in the net clearance of nortriptyline. Rare postmarketing reports of concurrent use of valproate and amitriptyline resulting in an increased amitriptyline level have been received. Concurrent use of valproate and amitriptyline has rarely been associated with toxicity. Monitoring of amitriptyline levels should be considered for patients taking valproate concomitantly with amitriptyline. Consideration should be given to lowering the dose of amitriptyline/nortriptyline in the presence of valproate.

Carbamazepine/carbamazepine-10,11-Epoxide - Serum levels of carbamazepine (CBZ) decreased 17% while that of carbamazepine- 10,11-epoxide (CBZ-E) increased by 45% upon co-administration of valproate and CBZ to epileptic patients.

Clonazepam - The concomitant use of valproic acid and clonazepam may induce absence status in patients with a history of absence type seizures.

Diazepam - Valproate displaces diazepam from its plasma albumin binding sites and inhibits its metabolism. Co-administration of valproate (1500 mg daily) increased the free fraction of diazepam (10 mg) by 90% in healthy volunteers (n=6). Plasma clearance and volume of distribution for free diazepam were reduced by 25% and 20%, respectively, in the presence of valproate. The elimination half-life of diazepam remained unchanged upon addition of valproate.

Ethosuximide - Valproate inhibits the metabolism of ethosuximide. Administration of a single ethosuximide dose of 500 mg with valproate (800 to 1600 mg/day) to healthy volunteers (n=6) was accompanied by a 25% increase in elimination half-life of ethosuximide and a 15% decrease in its total clearance as compared to ethosuximide alone. Patients receiving valproate and ethosuximide, especially along with other anticonvulsants, should be monitored for alterations in serum concentrations of both drugs.

Lamotrigine - In a steady-state study involving 10 healthy volunteers, the elimination half-life of lamotrigine increased from 26 to 70 hours with valproate co-administration (a 165% increase). The dose of lamotrigine should be reduced when co-administered with valproate. Serious skin reactions (such as Stevens-Johnson Syndrome and toxic epidermal necrolysis) have been reported with concomitant lamotrigine and valproate administration. See lamotrigine package insert for details on lamotrigine dosing with concomitant valproate administration.

Phenobarbital - Valproate was found to inhibit the metabolism of phenobarbital. Co-administration of valproate (250 mg BID for 14 days) with phenobarbital to normal subjects (n=6) resulted in a 50% increase in half-life and a 30% decrease in plasma clearance of phenobarbital (60 mg single-dose). The fraction of phenobarbital dose excreted unchanged increased by 50% in presence of valproate.

There is evidence for severe CNS depression, with or without significant elevations of barbiturate or valproate serum concentrations. All patients receiving concomitant barbiturate therapy should be closely monitored for neurological toxicity. Serum barbiturate concentrations should be obtained, if possible, and the barbiturate dosage decreased, if appropriate.

Primidone, which is metabolized to a barbiturate, may be involved in a similar interaction with valproate.

Phenytoin - Valproate displaces phenytoin from its plasma albumin binding sites and inhibits its hepatic metabolism. Co-administration of valproate (400 mg TID) with phenytoin (250 mg) in normal volunteers (n=7) was associated with a 60% increase in the free fraction of phenytoin. Total plasma clearance and apparent volume of distribution of phenytoin increased 30% in the presence of valproate. Both the clearance and apparent volume of distribution of free phenytoin were reduced by 25%.

In patients with epilepsy, there have been reports of breakthrough seizures occurring with the combination of valproate and phenytoin. The dosage of phenytoin should be adjusted as required by the clinical situation.

Tolbutamide - From in vitro experiments, the unbound fraction of tolbutamide was increased from 20% to 50% when added to plasma samples taken from patients treated with valproate. The clinical relevance of this displacement is unknown.

Warfarin - In an in vitro study, valproate increased the unbound fraction of warfarin by up to 32.6%. The therapeutic relevance of this is unknown; however, coagulation tests should be monitored if DEPAKOTE therapy is instituted in patients taking anticoagulants.

Zidovudine - In six patients who were seropositive for HIV, the clearance of zidovudine (100 mg q8h) was decreased by 38% after administration of valproate (250 or 500 mg q8h); the half-life of zidovudine was unaffected.

Drugs for which either no interaction or a likely clinically unimportant interaction has been observed:
Acetaminophen - Valproate had no effect on any of the pharmacokinetic parameters of acetaminophen when it was concurrently administered to three epileptic patients.

Clozapine - In psychotic patients (n=11), no interaction was observed when valproate was co-administered with clozapine.

Lithium - Co-administration of valproate (500 mg BID) and lithium carbonate (300 mg TID) to normal male volunteers (n=16) had no effect on the steady-state kinetics of lithium.

Lorazepam - Concomitant administration of valproate (500 mg BID) and lorazepam (1 mg BID) in normal male volunteers (n=9) was accompanied by a 17% decrease in the plasma clearance of lorazepam.

Oral Contraceptive Steroids - Administration of a single-dose of ethinyloestradiol (50 μg)/levonorgestrel (250 μg) to 6 women on valproate (200 mg BID) therapy for 2 months did not reveal any pharmacokinetic interaction.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Valproic acid was administered orally to Sprague Dawley rats and ICR (HA/ICR) mice at doses of 80 and 170 mg/kg/day (approximately 10 to 50% of the maximum human daily dose on a mg/m2 basis) for two years. A variety of neoplasms were observed in both species. The chief findings were a statistically significant increase in the incidence of subcutaneous fibrosarcomas in high dose male rats receiving valproic acid and a statistically significant dose-related trend for benign pulmonary adenomas in male mice receiving valproic acid. The significance of these findings for humans is unknown.

Mutagenesis
Valproate was not mutagenic in an in vitro bacterial assay (Ames test), did not produce dominant lethal effects in mice, and did not increase chromosome aberration frequency in an in vivo cytogenetic study in rats. Increased frequencies of sister chromatid exchange (SCE) have been reported in a study of epileptic children taking valproate, but this association was not observed in another study conducted in adults. There is some evidence that increased SCE frequencies may be associated with epilepsy. The biological significance of an increase in SCE frequency is not known.

Fertility
Chronic toxicity studies in juvenile and adult rats and dogs demonstrated reduced spermatogenesis and testicular atrophy at oral doses of 400 mg/kg/day or greater in rats (approximately equivalent to or greater than the maximum human daily dose on a mg/m2 basis) and 150 mg/kg/day or greater in dogs (approximately 1.4 times the maximum human daily dose or greater on a mg/m2 basis). Segment I fertility studies in rats have shown doses up to 350 mg/kg/day (approximately equal to the maximum human daily dose on a mg/m2 basis) for 60 days to have no effect on fertility. THE EFFECT OF VALPROATE ON TESTICULAR DEVELOPMENT AND ON SPERM PRODUCTION AND FERTILITY IN HUMANS IS UNKNOWN.

Pregnancy
Pregnancy Category D: See WARNINGS.

Nursing Mothers
Valproate is excreted in breast milk. Concentrations in breast milk have been reported to be 1-10% of serum concentrations. It is not known what effect this would have on a nursing infant. Consideration should be given to discontinuing nursing when divalproex sodium is administered to a nursing woman.

Pediatric Use
Experience has indicated that pediatric patients under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions (see BOXED WARNING). When DEPAKOTE is used in this patient group, it should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. Above the age of 2 years, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups.

Younger children, especially those receiving enzyme-inducing drugs, will require larger maintenance doses to attain targeted total and unbound valproic acid concentrations.

The variability in free fraction limits the clinical usefulness of monitoring total serum valproic acid concentrations. Interpretation of valproic acid concentrations in children should include consideration of factors that affect hepatic metabolism and protein binding.

The safety and effectiveness of DEPAKOTE for the treatment of acute mania has not been studied in individuals below the age of 18 years.

The safety and effectiveness of DEPAKOTE for the prophylaxis of migraines has not been studied in individuals below the age of 16 years.

The basic toxicology and pathologic manifestations of valproate sodium in neonatal (4-day old) and juvenile (14-day old) rats are similar to those seen in young adult rats. However, additional findings, including renal alterations in juvenile rats and renal alterations and retinal dysplasia in neonatal rats, have been reported. These findings occurred at 240 mg/kg/day, a dosage approximately equivalent to the human maximum recommended daily dose on a mg/m2 basis. They were not seen at 90 mg/kg, or 40% of the maximum human daily dose on a mg/m2 basis.

Geriatric
Use No patients above the age of 65 years were enrolled in double-blind prospective clinical trials of mania associated with bipolar illness. In a case review study of 583 patients, 72 patients (12%) were greater than 65 years of age. A higher percentage of patients above 65 years of age reported accidental injury, infection, pain, somnolence, and tremor. Discontinuation of valproate was occasionally associated with the latter two events. It is not clear whether these events indicate additional risk or whether they result from preexisting medical illness and concomitant medication use among these patients.

A study of elderly patients with dementia revealed drug related somnolence and discontinuation for somnolence (see WARNINGS-Somnolence in the Elderly). The starting dose should be reduced in these patients, and dosage reductions or discontinuation should be considered in patients with excessive somnolence (see DOSAGE AND ADMINISTRATION).

There is insufficient information available to discern the safety and effectiveness of DEPAKOTE for the prophylaxis of migraines in patients over 65.

top

Adverse Reactions

Mania
The incidence of treatment-emergent events has been ascertained based on combined data from two placebo-controlled clinical trials of DEPAKOTE in the treatment of manic episodes associated with bipolar disorder. The adverse events were usually mild or moderate in intensity, but sometimes were serious enough to interrupt treatment. In clinical trials, the rates of premature termination due to intolerance were not statistically different between placebo, DEPAKOTE, and lithium carbonate. A total of 4%, 8% and 11% of patients discontinued therapy due to intolerance in the placebo, DEPAKOTE, and lithium carbonate groups, respectively.

Table 1 summarizes those adverse events reported for patients in these trials where the incidence rate in the DEPAKOTE-treated group was greater than 5% and greater than the placebo incidence, or where the incidence in the DEPAKOTE-treated group was statistically significantly greater than the placebo group. Vomiting was the only event that was reported by significantly p ≤ 0.05) more patients receiving DEPAKOTE compared to placebo.

Table 1 : Adverse Events Reported by > 5% of DEPAKOTE-Treated Patients During Placebo-Controlled Trials of Acute Mania1

Adverse Event

DEPAKOTE (n=89)

Placebo (n=97)

Nausea

22%

15%

Somnolence

19%

12%

Dizziness

12%

4%

Vomiting

12%

3%

Asthenia

10%

7%

Abdominal pain

9%

8%

Dyspepsia

9%

8%

Rash

6%

3%

1 The following adverse events occurred at an equal or greater incidence for placebo than for DEPAKOTE: back pain, headache, constipation, diarrhea, tremor, and pharyngitis.

The following additional adverse events were reported by greater than 1% but not more than 5% of the 89 divalproex sodium-treated patients in controlled clinical trials:

  • Body as a Whole: Chest pain, chills, chills and fever, fever, neck pain, neck rigidity.
  • Cardiovascular System: Hypertension, hypotension, palpitations, postural hypotension, tachycardia, vasodilation.
  • Digestive System: Anorexia, fecal incontinence, flatulence, gastroenteritis, glossitis, periodontal abscess.
  • Hemic and Lymphatic System: Ecchymosis.
  • Metabolic and Nutritional Disorders: Edema, peripheral edema.
  • Musculoskeletal System: Arthralgia, arthrosis, leg cramps, twitching.
  • Nervous System: Abnormal dreams, abnormal gait, agitation, ataxia, catatonic reaction, confusion, depression, diplopia, dysarthria, hallucinations, hypertonia, hypokinesia, insomnia, paresthesia, reflexes increased, tardive dyskinesia, thinking abnormalities, vertigo.
  • Respiratory System: Dyspnea, rhinitis.
  • Skin and Appendages: Alopecia, discoid lupus erythematosis, dry skin, furunculosis, maculopapular rash, seborrhea.
  • Special Senses: Amblyopia, conjunctivitis, deafness, dry eyes, ear pain, eye pain, tinnitus.
  • Urogenital System: Dysmenorrhea, dysuria, urinary incontinence.

Migraine
Based on two placebo-controlled clinical trials and their long term extension, DEPAKOTE was generally well tolerated with most adverse events rated as mild to moderate in severity. Of the 202 patients exposed to DEPAKOTE in the placebo-controlled trials, 17% discontinued for intolerance. This is compared to a rate of 5% for the 81 placebo patients. Including the long term extension study, the adverse events reported as the primary reason for discontinuation by ≥1% of 248 DEPAKOTE-treated patients were alopecia (6%), nausea and/or vomiting (5%), weight gain (2%), tremor (2%), somnolence (1%), elevated SGOT and/or SGPT (1%), and depression (1%).

Table 2 includes those adverse events reported for patients in the placebo-controlled trials where the incidence rate in the DEPAKOTE-treated group was greater than 5% and was greater than that for placebo patients.

Table 2 Adverse Events Reported by >5% of DEPAKOTE-Treated Patients During Migraine Placebo-Controlled Trials with a Greater Incidence Than Patients Taking Placebo1

Body System

Depakote

Placebo

Event

(N = 202)

(N = 81)

Gastrointestinal System

Nausea

31%

10%

Dyspepsia

13%

9%

Diarrhea

12%

7%

Vomiting

11%

1%

Abdominal pain

9%

4%

Increased appetite

6%

4%

Nervous System

Asthenia

20%

9%

Somnolence

17%

5%

Dizziness

12%

6%

Tremor

9%

0%

Other

Weight gain

8%

2%

Back pain

8%

6%

Alopecia

7%

1%

1The following adverse events occurred in at least 5% of DEPAKOTE-treated patients and at an equal or greater incidence for placebo than for DEPAKOTE: flu syndrome and pharyngitis.

The following additional adverse events were reported by greater than 1% but not more than 5% of the 202 divalproex sodium-treated patients in the controlled clinical trials:

  • Body as a Whole: Chest pain, chills, face edema, fever and malaise.
  • Cardiovascular System: Vasodilatation.
  • Digestive System: Anorexia, constipation, dry mouth, flatulence, gastrointestinal disorder (unspecified), and stomatitis.
  • Hemic and Lymphatic System: Ecchymosis.
  • Metabolic and Nutritional Disorders: Peripheral edema, SGOT increase, and SGPT increase.
  • Musculoskeletal System: Leg cramps and myalgia.
  • Nervous System: Abnormal dreams, amnesia, confusion, depression, emotional lability, insomnia, nervousness, paresthesia, speech disorder, thinking abnormalities, and vertigo.
  • Respiratory System: Cough increased, dyspnea, rhinitis, and sinusitis.
  • Skin and Appendages: Pruritus and rash.
  • Special Senses: Conjunctivitis, ear disorder, taste perversion, and tinnitu
  • Urogenital System: Cystitis, metrorrhagia, and vaginal hemorrhage.

Epilepsy
Based on a placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures, DEPAKOTE was generally well tolerated with most adverse events rated as mild to moderate in severity. Intolerance was the primary reason for discontinuation in the DEPAKOTE-treated patients (6%), compared to 1% of placebo-treated patients.

Table 3 lists treatment-emergent adverse events which were reported by ≥5% of DEPAKOTE-treated patients and for which the incidence was greater than in the placebo group, in the placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures. Since patients were also treated with other antiepilepsy drugs, it is not possible, in most cases, to determine whether the following adverse events can be ascribed to DEPAKOTE alone, or the combination of DEPAKOTE and other antiepilepsy drugs.

Table 3 : Adverse Events Reported by ³ 5% of Patients Treated with DEPAKOTE During Placebo-Controlled Trial of Adjunctive Therapy for Complex Partial Seizures


Depakote (%)

Placebo (%)

Body System/Event

(n = 77)

(n = 70)

Body as a Whole

Headache

31

21

Asthenia

27

7

Fever

6

4

Gastrointestinal System

Nausea

48

14

Vomiting

27

7

Abdominal Pain

23

6

Diarrhea

13

6

Anorexia

12

0

Dyspepsia

8

4

Constipation

5

1

Nervous System

Somnolence

27

11

Tremor

25

6

Dizziness

25

13

Diplopia

16

9

Amblyopia/Blurred Vision

12

9

Ataxia

8

1

Nystagmus

8

1

Emotional Lability

6

4

Thinking Abnormal

6

0

Amnesia

5

1

Respiratory System

Flu Syndrome

12

9

Infection

12

6

Bronchitis

5

1

Rhinitis

5

4

Other

Alopecia

6

1

Weight Loss

6

0

Table 4 lists treatment-emergent adverse events which were reported by ³5% of patients in the high dose DEPAKOTE group, and for which the incidence was greater than in the low dose group, in a controlled trial of DEPAKOTE monotherapy treatment of complex partial seizures. Since patients were being titrated off another antiepilepsy drug during the first portion of the trial, it is not possible, in many cases, to determine whether the following adverse events can be ascribed to DEPAKOTE alone, or the combination of DEPAKOTE and other antiepilepsy drugs.

Table 4 : Adverse Events Reported by ³5% of Patients in the High Dose Group in the Controlled Trial of DEPAKOTE Monotherapy for Complex Partial Seizures1


High Dose (%)

Low Dose (%)

Body System/Event

(n = 131)

(n = 134)

Body as a Whole

Asthenia

21

10

Digestive System

Nausea

34

26

Diarrhea

23

19

Vomiting

23

15

Abdominal Pain

12

9

Anorexia

11

4

Dyspepsia

11

10

Hemic/Lymphatic System

Thrombocytopenia

24

1

Ecchymosis

5

4

Metabolic/Nutritional

Weight Gain

9

4

Peripheral Edema

8

3

Nervous System

Tremor

57

19

Somnolence

30

18

Dizziness

18

13

Insomnia

15

9

Nervousness

11

7

Amnesia

7

4

Nystagmus

7

1

Depression

5

4

Respiratory System

Infection

20

13

Pharyngitis

8

2

Dyspnea

5

1

Skin and Appendages

Alopecia

24

13

Special Senses

Amblyopia/Blurred Vision

8

4

Tinnitus

7

1

1 Headache was the only adverse event that occurred in ³5% of patients in the high dose group and at an equal or greater incidence in the low dose group.

The following additional adverse events were reported by greater than 1% but less than 5% of the 358 patients treated with DEPAKOTE in the controlled trials of complex partial seizures:

  • Body as a Whole: Back pain, chest pain, malaise.
  • Cardiovascular System: Tachycardia, hypertension, palpitation.
  • Digestive System: Increased appetite, flatulence, hematemesis, eructation, pancreatitis, periodontal abscess.
  • Hemic and Lymphatic System: Petechia.
  • Metabolic and Nutritional Disorders: SGOT increased, SGPT increased.
  • Musculoskeletal System: Myalgia, twitching, arthralgia, leg cramps, myasthenia.
  • Nervous System: Anxiety, confusion, abnormal gait, paresthesia, hypertonia, incoordination, abnormal dreams, personality disorder.
  • Respiratory System: Sinusitis, cough increased, pneumonia, epistaxis.
  • Skin and Appendages: Rash, pruritus, dry skin.
  • Special Senses: Taste perversion, abnormal vision, deafness, otitis media.
  • Urogenital System: Urinary incontinence, vaginitis, dysmenorrhea, amenorrhea, urinary frequency.

Other Patient Populations
Adverse events that have been reported with all dosage forms of valproate from epilepsy trials, spontaneous reports, and other sources are listed below by body system.

Gastrointestinal:
The most commonly reported side effects at the initiation of therapy are nausea, vomiting, and indigestion. These effects are usually transient and rarely require discontinuation of therapy. Diarrhea, abdominal cramps, and constipation have been reported. Both anorexia with some weight loss and increased appetite with weight gain have also been reported. The administration of delayed-release divalproex sodium may result in reduction of gastrointestinal side effects in some patients.

CNS Effects: Sedative effects have occurred in patients receiving valproate alone but occur most often in patients receiving combination therapy. Sedation usually abates upon reduction of other antiepileptic medication. Tremor (may be dose-related), hallucinations, ataxia, headache, nystagmus, diplopia, asterixis, "spots before eyes" , dysarthria, dizziness, confusion, hypesthesia, vertigo, incoordination, and parkinsonism have been reported with the use of valproate. Rare cases of coma have occurred in patients receiving valproate alone or in conjunction with phenobarbital. In rare instances encephalopathy with or without fever has developed shortly after the introduction of valproate monotherapy without evidence of hepatic dysfunction or inappropriately high plasma valproate levels. Although recovery has been described following drug withdrawal, there have been fatalities in patients with hyperammonemic encephalopathy, particularly in patients with underlying urea cycle disorders (see WARNINGS - Urea Cycle Disorders and PRECAUTIONS).

Several reports have noted reversible cerebral atrophy and dementia in association with valproate therapy.

Dermatologic: Transient hair loss, skin rash, photosensitivity, generalized pruritus, erythema multiforme, and Stevens-Johnson syndrome. Rare cases of toxic epidermal necrolysis have been reported including a fatal case in a 6 month old infant taking valproate and several other concomitant medications. An additional case of toxic epidermal necrosis resulting in death was reported in a 35 year old patient with AIDS taking several concomitant medications and with a history of multiple cutaneous drug reactions. Serious skin reactions have been reported with concomitant administration of lamotrigine and valproate (see PRECAUTIONS - Drug Interactions).

Psychiatric: Emotional upset, depression, psychosis, aggression, hyperactivity, hostility, and behavioral deterioration.

Musculoskeletal: Weakness.

Hematologic: Thrombocytopenia and inhibition of the secondary phase of platelet aggregation may be reflected in altered bleeding time, petechiae, bruising, hematoma formation, epistaxis, and frank hemorrhage (see PRECAUTIONS - General and Drug Interactions). Relative lymphocytosis, macrocytosis, hypofibrinogenemia, leukopenia, eosinophilia, anemia including macrocytic with or without folate deficiency, bone marrow suppression, pancytopenia, aplastic anemia, agranulocytosis, and acute intermittent porphyria.

Hepatic: Minor elevations of transaminases (eg, SGOT and SGPT) and LDH are frequent and appear to be dose-related. Occasionally, laboratory test results include increases in serum bilirubin and abnormal changes in other liver function tests. These results may reflect potentially serious hepatotoxicity (see WARNINGS).

Endocrine: Irregular menses, secondary amenorrhea, breast enlargement, galactorrhea, and parotid gland swelling. Abnormal thyroid function tests (see PRECAUTIONS).

There have been rare spontaneous reports of polycystic ovary disease. A cause and effect relationship has not been established.

Pancreatic: Acute pancreatitis including fatalities (see WARNINGS).

Metabolic: Hyperammonemia (see PRECAUTIONS), hyponatremia, and inappropriate ADH secretion.

There have been rare reports of Fanconi's syndrome occurring chiefly in children.

Decreased carnitine concentrations have been reported although the clinical relevance is undetermined.

Hyperglycinemia has occurred and was associated with a fatal outcome in a patient with preexistent nonketotic hyperglycinemia.

Genitourinary: Enuresis and urinary tract infection.

Special Senses: Hearing loss, either reversible or irreversible, has been reported; however, a cause and effect relationship has not been established. Ear pain has also been reported.

Other: Allergic reaction, anaphylaxis, edema of the extremities, lupus erythematosus, bone pain, cough increased, pneumonia, otitis media, bradycardia, cutaneous vasculitis, fever, and hypothermia.

top

Overdose

Overdosage with valproate may result in somnolence, heart block, and deep coma. Fatalities have been reported; however patients have recovered from valproate levels as high as 2120 μg/mL.

In overdose situations, the fraction of drug not bound to protein is high and hemodialysis or tandem hemodialysis plus hemoperfusion may result in significant removal of drug. The benefit of gastric lavage or emesis will vary with the time since ingestion. General supportive measures should be applied with particular attention to the maintenance of adequate urinary output.

Naloxone has been reported to reverse the CNS depressant effects of valproate overdosage. Because naloxone could theoretically also reverse the antiepileptic effects of valproate, it should be used with caution in patients with epilepsy.

top

Dosage

Mania
DEPAKOTE tablets are administered orally. The recommended initial dose is 750 mg daily in divided doses. The dose should be increased as rapidly as possible to achieve the lowest therapeutic dose which produces the desired clinical effect or the desired range of plasma concentrations. In placebo-controlled clinical trials of acute mania, patients were dosed to a clinical response with a trough plasma concentration between 50 and 125 μg/mL. Maximum concentrations were generally achieved within 14 days. The maximum recommended dosage is 60 mg/kg/day.

There is no body of evidence available from controlled trials to guide a clinician in the longer term management of a patient who improves during DEPAKOTE treatment of an acute manic episode. While it is generally agreed that pharmacological treatment beyond an acute response in mania is desirable, both for maintenance of the initial response and for prevention of new manic episodes, there are no systematically obtained data to support the benefits of DEPAKOTE in such longer-term treatment. Although there are no efficacy data that specifically address longer-term antimanic treatment with DEPAKOTE, the safety of DEPAKOTE in long-term use is supported by data from record reviews involving approximately 360 patients treated with DEPAKOTE for greater than 3 months.

Epilepsy
DEPAKOTE tablets are administered orally. DEPAKOTE is indicated as monotherapy and adjunctive therapy in complex partial seizures in adults and pediatric patients down to the age of 10 years, and in simple and complex absence seizures. As the DEPAKOTE dosage is titrated upward, concentrations of phenobarbital, carbamazepine, and/or phenytoin may be affected (see PRECAUTIONS - Drug Interactions).

Complex Partial Seizures: For adults and children 10 years of age or older.

Monotherapy (Initial Therapy): DEPAKOTE has not been systematically studied as initial therapy. Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 μg/mL. No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made.

The probability of thrombocytopenia increases significantly at total trough valproate plasma concentrations above 110 μg/mL. in females and 135 μg/mL. in males. The benefit of improved seizure control with higher doses should be weighed against the possibility of a greater incidence of adverse reactions.

Conversion to Monotherapy: Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 - 100 μg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. Concomitant antiepilepsy drug (AED) dosage can ordinarily be reduced by approximately 25% every 2 weeks. This reduction may be started at initiation of DEPAKOTE therapy, or delayed by 1 to 2 weeks if there is a concern that seizures are likely to occur with a reduction. The speed and duration of withdrawal of the concomitant AED can be highly variable, and patients should be monitored closely during this period for increased seizure frequency.

Adjunctive Therapy: DEPAKOTE may be added to the patient's regimen at a dosage of 10 to 15 mg/kg/day. The dosage may be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 μg/mL.). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. If the total daily dose exceeds 250 mg, it should be given in divided doses.

In a study of adjunctive therapy for complex partial seizures in which patients were receiving either carbamazepine or phenytoin in addition to DEPAKOTE, no adjustment of carbamazepine or phenytoin dosage was needed (see CLINICAL STUDIES). However, since valproate may interact with these or other concurrently administered AEDs as well as other drugs (see Drug Interactions), periodic plasma concentration determinations of concomitant AEDs are recommended during the early course of therapy (see PRECAUTIONS - Drug Interactions).

Simple and Complex Absence Seizures: The recommended initial dose is 15 mg/kg/day, increasing at one week intervals by 5 to 10 mg/kg/day until seizures are controlled or side effects preclude further increases. The maximum recommended dosage is 60 mg/kg/day. If the total daily dose exceeds 250 mg, it should be given in divided doses.

A good correlation has not been established between daily dose, serum concentrations, and therapeutic effect. However, therapeutic valproate serum concentrations for most patients with absence seizures is considered to range from 50 to 100 μg/mL. Some patients may be controlled with lower or higher serum concentrations (see CLINICAL PHARMACOLOGY).

As the DEPAKOTE dosage is titrated upward, blood concentrations of phenobarbital and/or phenytoin may be affected (see PRECAUTIONS).

Antiepilepsy drugs should not be abruptly discontinued in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life.

In epileptic patients previously receiving DEPAKENE (valproic acid) therapy, DEPAKOTE tablets should be initiated at the same daily dose and dosing schedule. After the patient is stabilized on DEPAKOTE tablets, a dosing schedule of two or three times a day may be elected in selected patients.

Migraine
DEPAKOTE tablets are administered orally. The recommended starting dose is 250 mg twice daily. Some patients may benefit from doses up to 1000 mg/day. In the clinical trials, there was no evidence that higher doses led to greater efficacy.

General Dosing Advice
Dosing in Elderly Patients - Due to a decrease in unbound clearance of valproate and possibly a greater sensitivity to somnolence in the elderly, the starting dose should be reduced in these patients. Dosage should be increased more slowly and with regular monitoring for fluid and nutritional intake, dehydration, somnolence, and other adverse events. Dose reductions or discontinuation of valproate should be considered in patients with decreased food or fluid intake and in patients with excessive somnolence. The ultimate therapeutic dose should be achieved on the basis of both tolerability and clinical response (see WARNINGS).

Dose-Related Adverse Events - The frequency of adverse effects (particularly elevated liver enzymes and thrombocytopenia) may be dose-related. The probability of thrombocytopenia appears to increase significantly at total valproate concentrations of ≥110 μg/mL (females) or ≥ 135 μg/mL (males) (see PRECAUTIONS). The benefit of improved therapeutic effect with higher doses should be weighed against the possibility of a greater incidence of adverse reactions.

G.I. Irritation - Patients who experience G.I. irritation may benefit from administration of the drug with food or by slowly building up the dose from an initial low level.

top

How Supplied

Depakote tablets are supplied in three dosage strengths containing divalproex sodium equivalent to 125 mg, 250 mg or 500 mg of valproic acid.

DEPAKOTE tablets (divalproex sodium delayed-release tablets) are supplied as:

125 mg salmon pink-colored tablets:
Bottles of 100. (NDC 0074-6212-13)
Abbo-Pac® unit dose packages of
100 (NDC 0074-6212-11).
250 mg peach-colored tablets:
Bottles of 100 (NDC 0074-6214-13)
Bottles of 500 (NDC 0074-6214-53)
Abbo-Pac® unit dose packages of
100 (NDC 0074-6214-11).
500 mg lavender-colored tablets:
Bottles of 100 (NDC 0074-6215-13)
Bottles of 500 (NDC 0074-6215-53)
Abbo-Pac® unit dose packages of
100 (NDC 0074-6215-11).

Recommended storage: Store tablets below 86ËšF (30ËšC).

Manufactured by
Abbott Pharmaceuticals PR Ltd.
Barceloneta, PR 00617

back to top

Depakote during pregnancy
Depakote patient information (plain English)

Detailed Info on Signs, Symptoms, Causes, Treatments of Bipolar Disorder


The information in this monograph is not intended to cover all possible uses, directions, precautions, drug interactions or adverse effects. This information is generalized and is not intended as specific medical advice. If you have questions about the medicines you are taking or would like more information, check with your doctor, pharmacist, or nurse. Last updated 09/04.

Copyright © 2007 Healthyplace.com Inc. All rights reserved.

back to: Psychiatric Medications Pharmacology Homepage